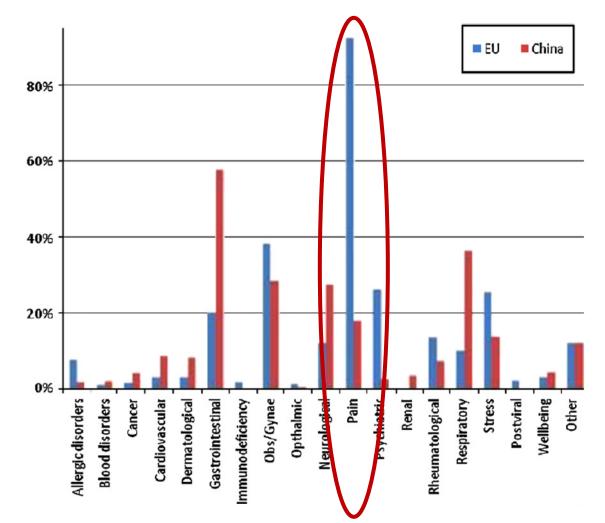
Acupuncture for chronic musculoskeletal pain

Professor Hugh MacPherson University of York, UK ww.hughmacpherson.com

Outline


- Background
 - Utilisation of acupuncture
 - Growing evidence base

- Primary questions:
 - Is acupuncture better than a placebo (sham)?
 - Is acupuncture better than usual medical care?

Implications for policy and practice

Utilisation of acupuncture in EU and China

N. Robinson et al. / Journal of Ethnopharmacology 140 (2012) 604-613

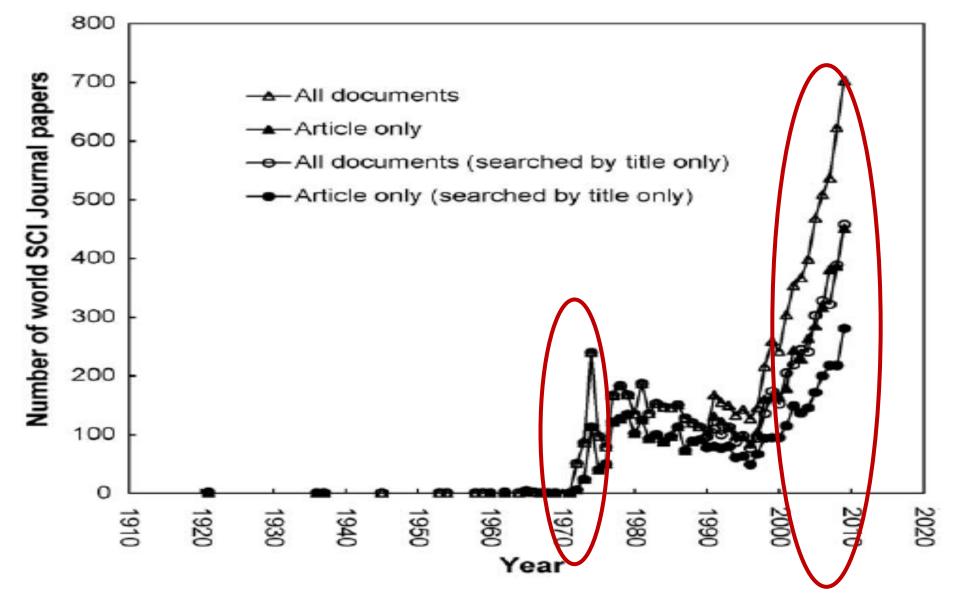


Fig. 1. Number of SCI-Expanded journals' papers referring to "electroacupuncture", "electro-acupuncture", "acupoint", "acupunctur", and "percutaneous electrical nerve stimulation" since 1900.

J.-S. Han, Y.-S. Ho / Neuroscience and Biobehavioral Reviews 35 (2011) 680–687

Meta-analysis of acupuncture for chronic pain

- Method: Individual patient data metaanalysis (39 trials and 20,827 patients)
- Inclusion: High quality acupuncture trials with chronic pain conditions:
 - Headache
 - Osteoarthritis
 - Musculoskeletal pain (shoulder, neck and back pain)

Question 1:

Is acupuncture better than sham (placebo)?

Acupuncture

VS.

- Sham acupuncture:
 - Penetrating needle at non acupuncture points
 - Non-penetrating needles at true acupuncture points

Acupuncture vs. Sham (placebo) controls: effect sizes

Condition		Effect sizes		P values
	Acupun	cture vs. Shan	n (placebo) contro	ls
Headache/migraine		0.16	(0.08 to 0.25)	P<0.001
Osteoarthritis		0.18	(0.11 to 0.25)	P<0.001
LBP & Neck Pain		0.19	(0.11 to 0.28)	P<0.001
Shoulder Pain		0.58	(0.42 to 0.74)	P<0.001
Effect sizes	0.8 = LARG	E		
	0.5 = MODE	relevant)		
	0.3 = SMAL	L		

Values in parentheses are 95% confidence intervals

Question 2:

Is acupuncture better than usual care controls?

Acupuncture

VS.

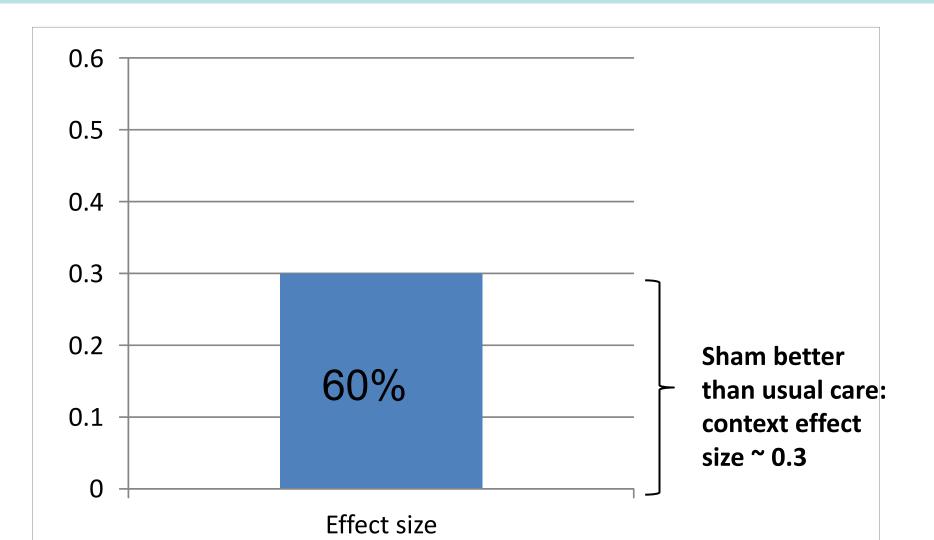
- Usual care:
 - No treatment
 - . Wait list
 - Rescue medication
 - Usual care
 - Other standard treatment

Acupuncture vs. Usual care controls: effect sizes

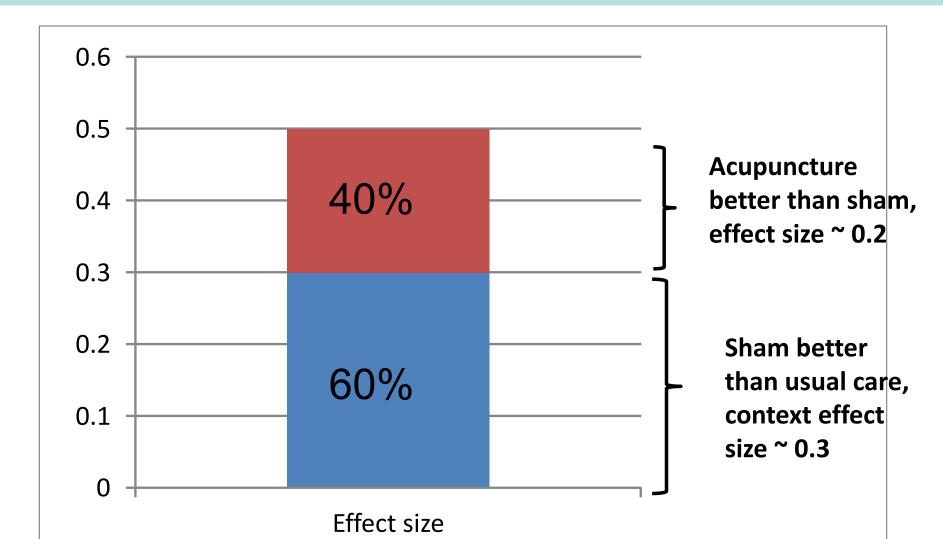
Condition	Effect sizes		P values			
	$ \land$					
Acupuncture vs. Usual care controls						
Migraine/headache	0.44	(0.39 to 0.48)	P<0.001			
Osteoarthritis	0.63	(0.56 to 0.69)	P<0.001			
Back & Neck Pain	0.54	(0.50 to 0.57)	P<0.001			
Effect sizes 0.8 = LARG	Ξ					
0.5 = MODERATE (clinically relevant)						
0.3 = SMALI	_					

Values in parentheses are 95% confidence intervals

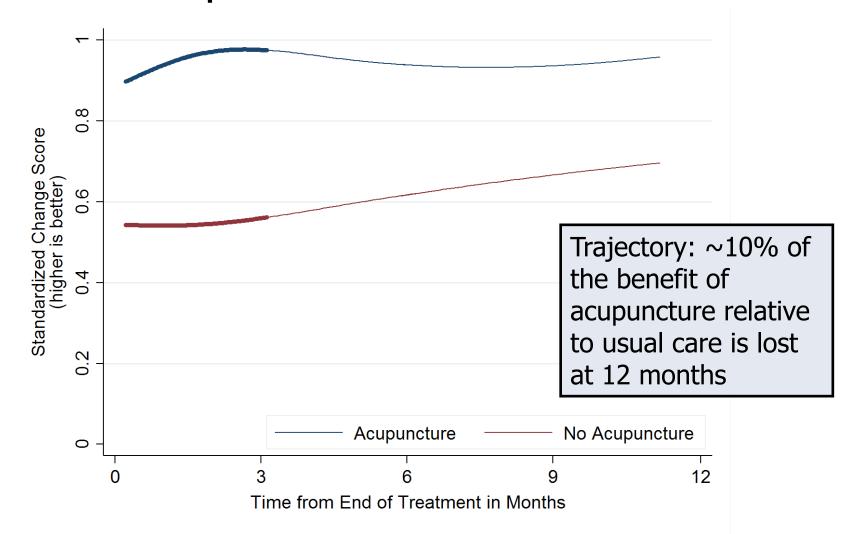
Primary results on effectiveness


- Acupuncture outperforms sham acupuncture
 - small effect size of ~0.2
- •Acupuncture outperforms usual care
 - moderate effect size of ~0.5
 - clinically relevant
- PLUS (data not shown)
- Sham acupuncture outperforms usual care

 context effect size of ~0.3


[All statistically significant at p<0.001]

Vickers AJ et al. Acupuncture for Chronic Pain. J Pain Off J Am Pain Soc. 2017


Even sham acupuncture outperforms usual care, with effect size of ~ 0.3

Acupuncture better than usual care ~ 0.5 Acupuncture better than sham ~ 0.2

Trajectory of benefit: Acupuncture vs. usual care

MacPherson et al. PAIN. 2017; 158 (5): 784–793

Implications for placebo research

- Acupuncture outperforms sham (placebo)
 - small effect size of ~0.2
 - statistically significant at p<0.001
- In addition (data not presented)
 - large sample sizes needed
 - penetrating sham is physiologically very active
 - acupuncture has similar effect size to NSAIDs vs. placebo (and safer) and to many other interventions

Implications for practice and policy

- Acupuncture is an evidence-based intervention for chronic pain
 - moderate effect size of ~0.5 (p<0.001)</p>
 - effect size considered clinically relevant
 - -90% of benefit sustained at 12 months
- In addition (data not presented)
 - evidence on acupuncture safety and costeffectiveness

Acknowledgments

The Acupuncture Trialists' Collaboration is funded by an R21 (AT004189I) from the National Center for Complementary and **Alternative Medicine** (NCCAM) at the National Institutes of Health (NIH) to Dr Vickers and by a grant from the Samueli Institute.

This research is supported in part by the National Institute for Health Research (NIHR) under Programme Grants for Applied Research (Grant No. RP-PG-0707-10186). The views expressed in this presentation are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health.

References, see ww.hughmacpherson.com

1. Vickers AJ, Cronin AM, Maschino AC, Lewith G, MacPherson H, Victor N, et al. Individual patient data meta-analysis of acupuncture for chronic pain: protocol of the Acupuncture Trialists' Collaboration. Trials. 2010;11:90.

2. Vickers AJ, Cronin AM, Maschino AC, Lewith G, MacPherson H, Foster NE, et al. Acupuncture for Chronic Pain: Individual Patient Data Meta-analysis. Arch.Intern.Med. 2012 Sep 10;172(19):1444–53.

3. MacPherson H, Maschino AC, Lewith G, Foster NE, Witt C, Vickers AJ, et al. Characteristics of acupuncture treatment associated with outcome: an individual patient meta-analysis of 17,922 patients with chronic pain in randomised controlled trials. PLoS ONE. 2013;8(10):e77438.

4. Vickers AJ, Maschino AC, Lewith G, MacPherson H, Sherman KJ, Witt CM, et al. Responses to the Acupuncture Trialists' Collaboration individual patient data meta-analysis. Acupunct Med. 2013 Mar;31(1):98–100.

5. MacPherson H, Vertosick E, Lewith G, Linde K, Sherman KJ, Witt CM, et al. Influence of Control Group on Effect Size in Trials of Acupuncture for Chronic Pain: A Secondary Analysis of an Individual Patient Data Meta-Analysis. PLoS ONE. 2014 Apr 4;9(4):e93739.

6. MacPherson H, Vertosick EA, Foster NE, Lewith G, Linde K, Sherman KJ, et al. The persistence of the effects of acupuncture after a course of treatment: A meta-analysis of patients with chronic pain. Pain. 2017;158(5):784–93

7. Vickers AJ, Vertosick EA, Lewith G, MacPherson H, et al. Acupuncture for Chronic Pain: Update of an Individual Patient Data Meta-Analysis. J Pain Off J Am Pain Soc. 2017